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Abstract: The transformer manufacturing cost minimisation (TMCM), also known as transformer design
optimisation, is a complex constrained mixed-integer non-linear programming problem with discontinuous
objective function. This paper proposes an innovative method combining genetic algorithm (GA) and finite
element method (FEM) for the solution of TMCM problem. The main contributions of the proposed method
are: (a) introduction of an innovative recursive GA with a novel external elitism strategy associated with
variable crossover and mutation rates resulting in an improved GA, (b) adoption of two particular finite
element models of increased accuracy and high computational speed for the validation of the optimal design
by computing the no-load loss and impedance and (c) combination of the innovative recursive GA with the
two particular finite element models resulting in a proposed GA-FEM model that finds the global optimum, as
concluded after several tests on actual transformer designs, while other existing methods provided suboptimal
solutions that are 3.1–5.8% more expensive than the optimal solution.
1 Introduction
The aim of transformer design is to optimise an objective
function subject to constraints imposed by international
standards and transformer specification. In the bibliography
of transformer design, several objective functions are
optimised [1, 2]:

1. Minimisation of transformer manufacturing cost (MC)
[3, 4].

2. Minimisation of total owning cost [5, 6].

3. Minimisation of transformer active part cost [7, 8].

4. Minimisation of active part mass [9].

5. Maximisation of transformer apparent power [9, 10].
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Among the above-mentioned objective functions, the most
commonly used functions are [1]:

1. The transformer MC, i.e. the sum of materials cost plus the
labour cost. This objective function is mainly used when
designing transformers for industrial and commercial users,
since most of these users do not evaluate losses when they
purchase transformers [11]. One of the challenges of this
objective function is that the transformer MC depends on the
cost of materials (copper, aluminium, steel etc.) that are stock
exchange commodities with fluctuating prices on the world
market.

2. The transformer total owning cost, i.e. the sum of
transformer purchase cost plus the cost of transformer losses.
This objective function is mainly used when designing
transformers for electric utilities, since utilities usually evaluate
the cost of transformer losses when they purchase
transformers [11, 12]. Strategies for development and
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diffusion of energy efficient distribution transformers
(SEEDT) project concluded that electricity distribution
companies and commercial and industrial users should use
the total owning cost method to make transformer-
purchasing decisions [12].

The transformer design requires knowledge of
electromagnetism, magnetic circuit analysis, electric circuit
analysis, loss mechanisms and heat transfer. The transformer
design problem, because of its importance and complexity,
has attracted the interest of many researchers [1–10]. There
are two different methodologies for the solution of
transformer design problem: (a) the multiple design method
and (b) the mathematical programming method. The
multiple design method [4, 5] is a heuristic technique that
assigns many alternative values to the design variables so as to
generate a large number of alternative designs and finally to
select the design that satisfies all the problem constraints with
the optimum value of the objective function; however, this
technique is not able to find the global optimum. The
geometric programming method is the most representative
mathematical programming method for the solution of
transformer design problem [9]; however, it has two
drawbacks: (a) it requires the development of the
mathematical model for each specific transformer type and
configuration in advance and (b) because of the large number
of coefficients in polynomial approximations, the geometric
programming method is lacking flexibility and cannot be
easily combined with more general transformer performance
verification or cost estimation algorithms. Recently, another
mathematical programming method, more specifically a
parallel mixed integer programming-finite element method
(MIP-FEM) technique [8], has been proposed performing
better than the heuristic method [4]; however, MIP-FEM is
very sensitive to the selection of the value range of design
variables, so MIP-FEM often fails to find the global optimum.

This paper proposes a new power transformer design
methodology based on a novel recursive genetic algorithm-
finite element method (GA-FEM) technique. The proposed
method successfully combines the optimisation capabilities of
an improved GA (Section 2.3) as well as the accuracy and the
computational speed of two particular finite element models
(Section 2.2) that are adopted for the validation of the
optimal design by computing the no-load loss (NLL) and
impedance. The five main contributions and features of the
proposed improved GA of Section 2.3 are: (a) introduction of
an innovative recursive GA with a novel external elitism
strategy assuring that the solution at a current GA run is
better than or at least the same as the solution at the previous
GA run, (b) incorporation of an internal elitism strategy
assuring the copy of the best solution to the next GA
generation, (c) incorporation of the optimal solution provided
by MIP-FEM method [8] into the initial population of the
initial GA run, which in combination with the external and
internal elitism strategies assures that the proposed GA-FEM
will converge to a better or at least the same solution with
the MIP-FEM method, (d) adoption of variable crossover
Electr. Power Appl., 2009, Vol. 3, Iss. 6, pp. 514–519
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and mutation rates resulting in improved GA search and
(e) optimal configuration for the parameters of the improved
GA. In this paper, the minimisation of transformer MC has
been considered as transformer design objective; however, the
proposed recursive GA-FEM method can be also applied for
all other transformer design objective functions, e.g. the
minimisation of transformer total owning cost. Application
results (Section 3) confirm that the proposed GA-FEM
technique finds the global optimum solution to transformer
design problem in very short time, while two other methods
find suboptimal solutions.

2 Proposed GA-FEM methodology
2.1 Problem formulation

The objective of transformer manufacturing cost minimisation
(TMCM) problem, also called transformer design optimisation
problem, is to design the transformer so as to minimise the
transformer MC, i.e. the sum of materials cost plus labour
cost, subject to constraints imposed by international standards
and transformer user needs. These constraints are:

1. Induced voltage constraint: it expresses the relation between
the induced voltage in the secondary winding and the
magnetic induction.

2. Turns ratio constraint: the turns ratio is equal to the voltage
ratio.

3. NLL constraint: the designed NLL must be smaller than a
maximum NLL.

4. Load loss (LL) constraint: the designed LL is required to be
smaller than a maximum LL.

5. Total loss (i.e. NLL plus LL) constraint: the designed total
loss must be smaller than a maximum total loss.

6. Impedance constraint: the designed impedance must be
between a minimum and a maximum impedance.

7. Magnetic induction constraint: the designed magnetic
induction is required to be smaller than a saturation magnetic
induction.

8. Heat transfer constraint: the total heat produced by the
transformer total loss (i.e. NLL plus LL) must be smaller
than the total heat that can be carried away by the
combined effects of conduction, convection and radiation.

9. Temperature rise constraint: the transformer temperature rise
(because of NLL and LL) must be smaller than a maximum
temperature rise.

10. Efficiency constraint: the transformer efficiency is required
to be greater than a minimum efficiency.
515
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11. No-load current constraint: the transformer no-load current
is required to be smaller than a maximum no-load current.

12. Voltage regulation constraint: the transformer voltage
regulation is required to be smaller than a maximum
voltage regulation.

13. Thickness of layer insulation constraint: the thickness of
layer insulation must withstand the induced voltage test
and the impulse voltage test. More specifically: (a) the
induced voltage must be smaller than a maximum induced
voltage that the insulation can withstand and (b) the
impulse voltage must be smaller than a maximum impulse
voltage that the insulation can withstand.

14. Tank dimensions constraints: (a) the tank length must be
smaller than a maximum tank length, (b) the tank width
must be smaller than a maximum tank width and (c) the
tank height must be smaller than a maximum tank height.

The TMCM is a complex constrained mixed-integer non-
linear programming problem. The TMCM problem is
further complicated by the fact that the objective (i.e. the
MC) function is discontinuous [5].

2.2 Finite element models

The FEM is a powerful tool for the analysis and design of power
transformers. In particular for the TMCM problem of wound
core type transformers, it is proposed to use two FE models,
the first to compute the transformer NLL and the second
to evaluate the transformer impedance. In particular, a
permeability tensor FE model is adopted for the computation
of the NLL, since this model accurately represents the core
material and the geometry of wound cores [13]. Moreover, an
efficient FE model with detailed representation of winding
geometry and cooling ducts is adopted for impedance
evaluation [14]. Both FE models are based on a particular
magnetic scalar potential formulation [15], which is
advantageous in terms of computational speed in comparison
to FEM based on magnetic vector potential, as there is only
one unknown at each node of the FE mesh. The accuracy
and the computational speed are the main advantages of the
above two FE models that make them ideal for the solution
of the TMCM problem.

2.3 Introduction and configuration of
an improved recursive GA

GAs are powerful optimisation methods inspired by natural
genetics and biological evolution. Their main advantages are:
(a) GAs explore several areas of the search space
simultaneously, reducing the probability of being trapped in
local optima and (b) GAs do not require any prior
knowledge, space limitations or special properties of the
function to be optimised, such as smoothness, convexity,
unimodality or existence of derivatives [16].
6
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This paper introduces an improved GA for the solution of the
TMCM problem. This section presents the contributions,
features and optimal parameter settings of the improved GA.

Since the GA is a stochastic optimisation method, in
general, it converges to different solution each time the GA
is executed. That is why this paper proposes to implement
a novel recursive GA approach, i.e. to run N times the GA
and to introduce an external elitism strategy that copies the
best solution found at the end of each GA run to the
initial population of the next GA run. This innovative
external elitism strategy assures that after the completion of
each GA run, a solution is provided that is better than or
at least the same as the solution of the previous GA run.
As will be shown in Section 3, after 7–10 GA runs, the
global optimum is reached for the TMCM problem.

An internal elitism strategy is also adopted, i.e. the best
solution of every generation is copied to the next
generation so that the possibility of its destruction through
a genetic operator is eliminated.

The initial population of candidate solutions is created
randomly. However, in the initial population of the initial
GA run, the worst solution (i.e. the one with the maximum
MC) is substituted by the solution that is computed by the
MIP-FEM method proposed in [8]. The incorporation of
the MIP-FEM solution into the initial population of the
initial GA run in combination with the external and internal
elitism strategies assures that the proposed method will
converge to a better or at least the same solution with MIP-
FEM method.

To improve the GA search by assuring a good exploration at
the beginning of evolution, and more and more exploitation
capability while optimisation goes on, variable crossover and
mutation rates were tested. After enough experimentation, it
was found that the best results were obtained with the
following variable crossover and mutation probabilities

Pck ¼ 0:35þ 0:45
k� 1

Ng � 1

" #
(1)

Pmk ¼ 0:055� 0:045
k� 1

Ng � 1

" #
(2)

where Pck is the crossover probability at generation k, Pmk is
the mutation probability at generation k, and Ng is the
number of generations.

The first column of Table 1 presents the seven-design
variables that have been used for the solution of the TMCM
problem by the proposed GA. In Table 1 and throughout
this paper, LV stands for low voltage and HV stands for high
voltage. The fifth column of Table 1 shows that the first five
design variables are of integer type, while the rest two design
variables are of real type. The fourth column of Table 1 shows
IET Electr. Power Appl., 2009, Vol. 3, Iss. 6, pp. 514–519
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Table 1 Determination of the number of bits of GA chromosome

Design variable Symbol Unit Possible values Type Bits

number of LV turns x1 — 8 � x1 � 1000 integer 10

magnetic material type x2 — 1 � x2 � 12 integer 4

magnetic induction x3 G 10 000 � x3 � 18 500 integer 15

width of core leg x4 mm 80 � x4 � 500 integer 9

Core window height x5 mm 80 � x5 � 500 integer 9

LV current density x6 A/mm2 1.5 � x6 � 5.5 real 7

HV current density x7 A/mm2 1.5 � x7 � 5.5 real 7

number of bits of GA chromosome 61
T

the range of possible values that each design variable can take.
This range of possible values has been determined from a
large database of actual transformer designs with the
following main characteristics: three-phase, oil-immersed,
wound core distribution transformers from 25 kVA up to
2000 kVA, with voltages up to 36 V. Binary coding is used
for chromosome representation. The last column of Table 1
presents the number of bits used for each design variable. As
can be seen from the last row of Table 1, the GA
chromosome has 61 bits.

After trial and error, it was found that a population size of
40 chromosomes and a number of 30 generations provide
very good results for TMCM.

Among the four different selection schemes tested, i.e.
roulette wheel, tournament, deterministic sampling and
stochastic remainder sampling [16], the tournament selection
scheme produced the best results and convergence for TMCM.

2.4 Overview of proposed method

The flowchart of the proposed optimisation model for the
solution of TMCM problem, shown in Fig. 1, is composed
of two submodels:

1. MIP-FEM submodel: initially, MIP-FEM deterministic
optimisation method [8] is used to solve the TMCM
problem. Let S0 be the solution provided by that method.

2. Recursive GA-FEM submodel (N GA-FEM runs):
After the execution of MIP-FEM submodel, N runs of the
proposed recursive GA-FEM submodel are executed. Each
run of GA-FEM submodel requires two internal runs:

(a) GA run: The recursive GA-based optimisation model,
described in Section 2.3, is executed to solve the TMCM
problem. The solution S0 provided by the MIP-FEM
submodel is included in the initial population of the initial
GA run. In all the other GA runs, the best solution Si
Electr. Power Appl., 2009, Vol. 3, Iss. 6, pp. 514–519
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provided by the previous GA-FEM run is included at the
initial population of the next GA run. This approach
assures that the solution Si is better than or at least the
same as the solution Si21 (see Section 2.3).

(b) FEM run: The two FE models of Section 2.2 are used
for the computation of transformer NLL and impedance

Figure 1 Flowchart of the proposed method for TMCM
problem
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(unlike the analytical formulas used in the GA run) in order
to provide more accurate results and better convergence to the
optimal solution.

3 Results and discussion
3.1 Application of proposed method to
1600 kVA transformer design

The proposed GA-FEM method has been used for the
solution of the TMCM problem of an actual 1600 kVA
transformer design with the following main specifications:
rated frequency 50 Hz, rated HV 20 kV, rated LV 0.4 kV,
prescribed NLL 1700 W, prescribed LL 20 000 W and
prescribed impedance 6%. The NLL, LL and impedance
tolerances are according to IEC 60076-1 international
standard, i.e. the maximum NLL is 1955 W, the
maximum LL is 23 000 W, the maximum total loss is
23 870 W, the minimum impedance is 5.4% and the
maximum impedance is 6.6%. Table 2 compares the results
of the proposed method with a heuristic [4] and a MIP-
FEM method [8]. As can be seen from Table 2, the three
techniques converged to three different solutions. In

Table 2 Comparison of proposed GA-FEM method with two
existing transformer design methods for a 1600 kVA
transformer design

Parameter Heuristic MIP-FEM GA-FEM

number of LV turns 10 10 11

magnetic material
type

1 (i.e.
HiB)

2 (i.e.
M4)

1 (HiB)

magnetic induction,
G

16 012 16 991 18 000

width of core leg, mm 290 322 325

Core window height,
mm

338 322 354

LV current density,
A/mm2

4.3 4.6 4.3

HV current density,
A/mm2

4.0 3.8 4.6

NLL, W 1581 1952 1791

LL, W 19 035 18 767 21 151

Total loss, W 20 616 20 719 22 942

impedance, % 5.89 6.41 6.20

MC, $ 24 814 24 446 23 271

number of algorithm
runs

1 1 7

Total execution time,
min

0.45 0.79 3.42
8
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particular, the proposed recursive GA-FEM method, after
seven GA-FEM runs that are implemented into 3.42 min,
provides the best result, since it converges to the global
minimum MC of $23 271.

Fig. 2 compares the minimum MC computed by the above
three techniques for the solution of the 1600 kVA TMCM
problem. Since the heuristic and the MIP-FEM are both
deterministic optimisation techniques, they always converge
to the same minimum MC, i.e. $24 814 for the heuristic
and $24 446 for the MIP-FEM. On the other hand, the
proposed recursive GA-FEM, because of its special design
presented in Section 2.3, manages to progressively reduce
the MC, as the number of GA-FEM algorithm runs
increases. In particular, after seven GA-FEM runs, the
global minimum MC is achieved, which is 4.8% cheaper
than the MC computed by a MIP-FEM method [8] and
6.2% cheaper than the MC computed by a heuristic
method [4]. As can be seen from Fig. 2, after the seventh
GA-FEM run, the MC is not further decreased, which
means that seven GA-FEM runs are enough to obtain the
global optimum solution to TMCM problem.

Figure 2 Comparative results for a 1600 kVA transformer
design

Table 3 Comparison of average manufacturing cost saving
of proposed GA-FEM against heuristic [4] and MIP-FEM [8]

Rated
power,

kVA

Number
of designs

Cost saving of
proposed

against
heuristic

Cost saving of
proposed

against MIP-
FEM

100 25 5.3 1.8

160 25 4.9 2.6

250 25 8.0 4.4

400 25 6.5 3.0

630 25 6.0 2.8

800 25 5.9 2.0

1000 25 3.7 3.2

1600 25 6.3 4.9

average 5.8 3.1
IET Electr. Power Appl., 2009, Vol. 3, Iss. 6, pp. 514–519
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3.2 Generalisation of results

The proposed GA-FEM method has been tested on 200
actual transformer designs, of eight power ratings and
various loss categories and voltage ratings. As can be seen
from Table 3, the proposed GA-FEM method finds the
global optimum solution that is, on average (a) 5.8% cheaper
than the solution of a heuristic technique [4] and (b) 3.1%
cheaper than the solution of a MIP-FEM method [8].

4 Conclusion
This paper has proposed an innovative recursive GA-FEM
method for the solution of the complex constrained mixed-
integer non-linear TMCM problem. When tested on 200
actual transformer designs, the proposed GA-FEM
technique converged to the global optimum, thus GA-FEM
provides significant MC savings ranging from 3.1% to 5.8%,
in comparison with two deterministic optimisation methods
that converged to local optimum solutions. The proposed
recursive GA approach can be also very useful for the
solution of other optimisation problems in electric machines
and power systems.
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